How Virtual is Virtual: Designing for Distributed Work in Research and Development

NATIONAL SCIENCE FOUNDATION GRANT VOSS: VIRTUAL ORGANIZATIONS SOCIO-TECHNICAL SYSTEMS

CENTRAL RESEARCH QUESTION: HOW DO VIRTUAL MODES OF COMMUNICATION INFLUENCE THE QUALITY OF DELIBERATIONS (KEY CONVERSATIONS) AT VARIOUS STAGES OF THE R&D CONTINUUM/ INNOVATION PROCESS?

Supported by NSF-VOSS Award #0943237

Grant Background

- University of Illinois and STS Roundtable
- Seven member team: Doug Austrom, Betty Barrett, Betsy Merck, Bert Painter, Pam Posey and Ram Tenkasi
- In final year of 3 year grant

Desired Outcomes for this Session Through dialogue and exercises, we have the opportunity to ...

- 1. Develop a shared understanding of the implications of virtuality on key conversations/deliberations across the innovation continuum
- 2. Consider how 'fixes' differ depending on the degree of uncertainty in the R&D task
- 3. Explore the value of coordination mechanisms employed differently across the innovation continuum, as ways to overcome the "coordination costs" of global projects and multi-university research
- 4. Discuss the renewed relevance of 'STS' for organization design in this age of virtual collaboration and global innovation

Evolution of Socio-Technical Systems!

• STS v1.0

-Routine work in a single organization – e.g., coal mines, factories, oil refineries

- Work groups with pooled identity
- -Unitary conversion process
- -Linear conversion sequence

• STS v2.0

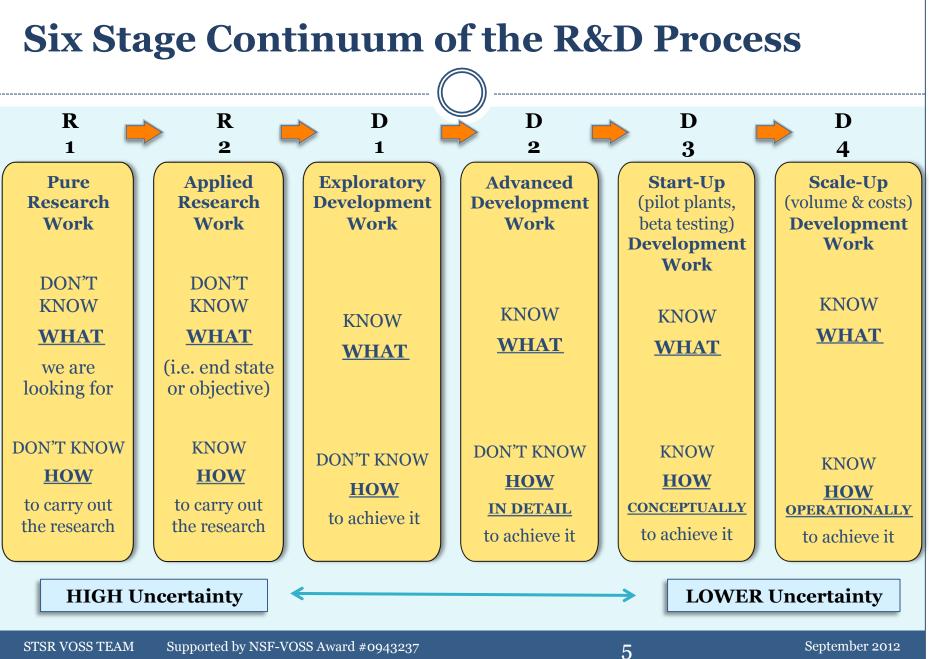
-Non-routine face-to-face knowledge work in single organizations – e.g., white collar office work, professional services firm, NPD and R&D

-Individual performers, specialized expertise

-Multiple, concurrent conversion processes

-Nonlinear conversion flow

• STS v3.0


-Virtual, non-routine work – e.g., R&D consortia, complex supply chains

-Individual performers and work groups distributed across multiple locations and/or organizations

-ICT enabled

-Multiple, concurrent, independent, and interdependent conversion processes

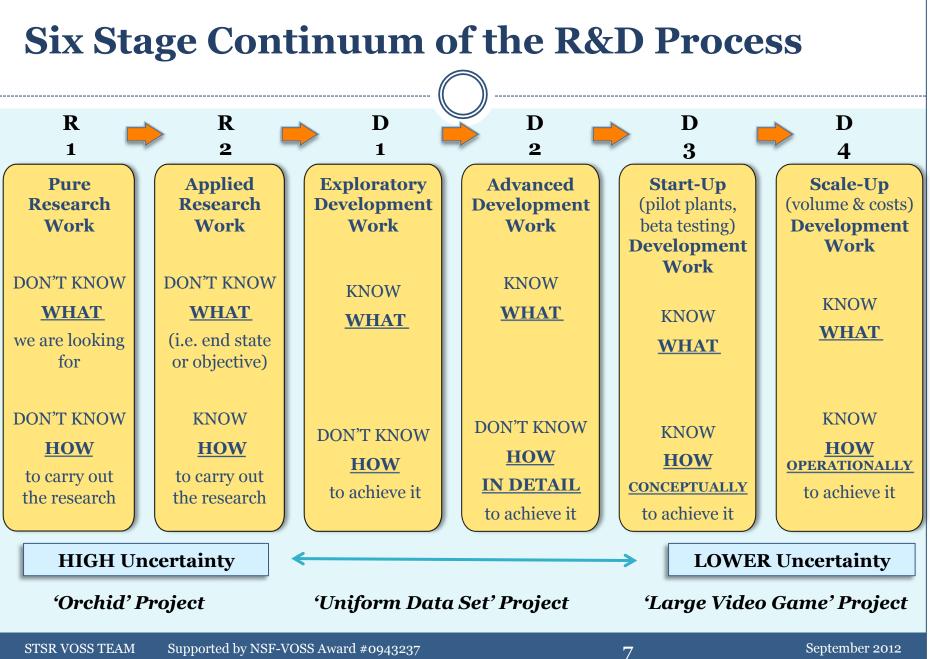
-Nonlinear conversion flows

Supported by NSF-VOSS Award #0943237 STSR VOSS TEAM

September 2012

Three Research Sites

Caltech-Orchid Project: fundamental research, R1


- Optical Radiation Cooling and Heating in Integrated Devices
- Tightly-Linked Collaboration for Design of Experiments & Device Fabrication among Laboratories using 3 Technology platforms
- Pasadena, Switzerland and Austria
- Major challenge: creative research and design and knowledge generation in a complex virtual setting
- NACC: a virtual R&D eco-system, D2-D4
 - Comprised of 29 NIA-funded Alzheimers Disease Centers (ADCs) and the National Alzheimers Coordinating Center Center (NACC)
 - Major challenge: Create Uniform Data Set agreeing upon and compiling data from the 29 different centers as the basis of research
- **LVG**: a large video game developer, D3-D4
 - Core team with distributed vendors in Philippines, China, India, Switzerland, North America and across the parking lot
 - **Major challenge:** Cost effective game development work with high quality and timeliness completed at a distance for art production, engineering and testing

Key Conversations/*Deliberations*: Definition and Elements

• **Key Conversations** are patterns of exchange and communication in which people engage with themselves or others to reduce the equivocality of a problematic issue

- The salient elements of a *deliberation* include the ...
 - **Topics** or problematic issues facing the social entity about which people reflect and communicate
 - **Forums** in which they occur which may be structured, semi-structured, unstructured or ad hoc
 - **Participants** both those who are currently involved and those who ideally should be involved in the deliberation

Examples of Key Conversations/Deliberations

- Orchid
 - What experiment shall we run?
 - How shall we design the experiment?
 - How shall we execute the experiment?
 - How do we make sense of the results?

• NACC

- What data will go in the UDS?
- What diagnostic instruments shall we use?
- Who will have access to the data?

- LVG
 - What new features shall we develop?
 - What contractor shall we use for this work?
 - What is the scope and time/cost estimate for this work?

• Directions: At your table, take 15 minutes to discuss the following question:

• What might be potential barriers to effective conversations/deliberations?

○ Large group comments – 5 minutes

Examples of Knowledge Work Barriers

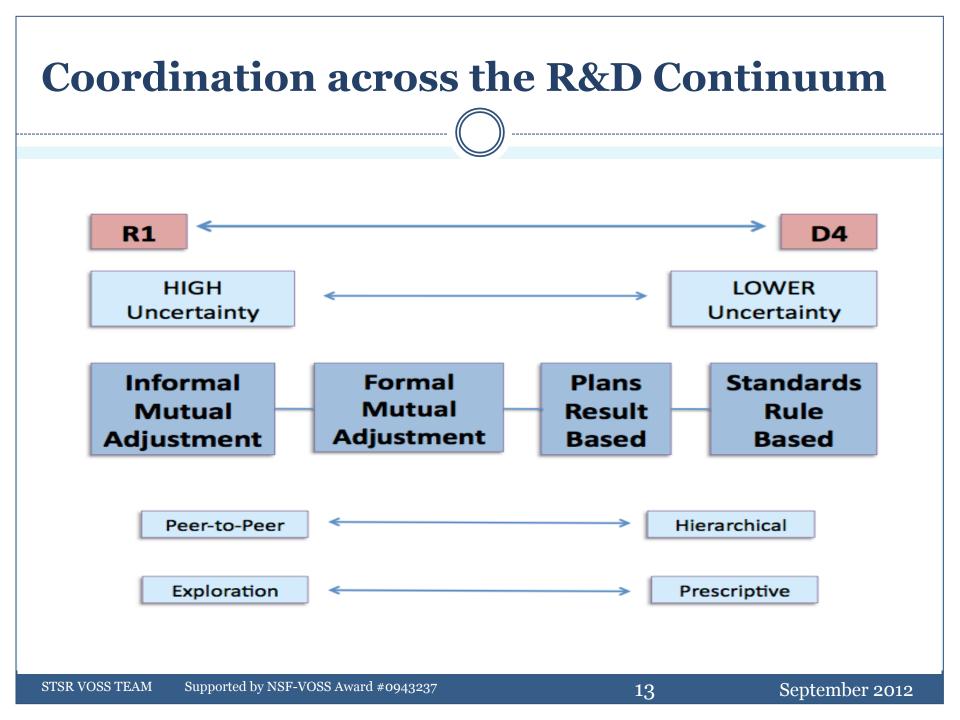
Lack of knowledge

• In the Orchid project, the technical procedures in two different laboratories were discovered to be incompatible and initially prevented development of inter-dependent experiments

Failure to utilize knowledge

• In LVG, corporate intelligence about particular vendor competencies was not initially utilized by an individual division in their vendor selection procedures

Failure to share knowledge


• In development of the NACC/UDS project, use of standardized data collection was seen by some researchers as an imposition over other data more suited to their own unique research interests

• Lack of common frame of reference

• In LVG, the developers did not have a common frame of how to conduct tests of the game

Exercise Part 2

- Directions: At your table work for 10 minutes and revisit the issue related to distributed (team)work that you were asked to consider in Exercise 1
 - How, what would you design to minimize the knowledge barriers?
 - ▼ Select one or two barriers to think through
 - Table group report outs a brief highlight from each table

Coordination Category	Case Examples	'Orchid' R1	'UDS' D2 D3-D4	'LVG' D3	D4
Coordination by STANDARDS	 Output Standardization—prototype, screen shots, visual targets Skills Standardization/training Standardization of Processes Diagnostic instruments Data formats Error-tracking procedures 		+ + +	(+)	+ + + +
Coordination by PLANS	 Delivery schedules Project milestones Requirement specifications Sign-offs Financial incentives Compelling 'mission'/goal 	+	+ + + +	+ + + +	
Coordination by FORMAL MUTUAL ADJUSTMENT	 Site inspection/verification Hierarchy/vertical communication Shared database/repository Formal meetings/status review Steering committees/task force Referent organization Facilitator/'Network Builder' role Liaison/'Straddler' role 	+ + +	+ + + +	+ + (+)	+
Coordination by INFORMAL MUTUAL ADJUSTMENT	 Impromptu communication Informal meetings Conferences, workshops Site visits Temporary co-location 	+ + + +	+ + +		

Most Significant Coordination Mechanisms in Case Study Virtual R&D Projects

Sociotechnical Systems Framework for Designing Coordination of Virtual R&D

STRATEGIES (Mission, Collaboration Agreements)

STRUCTURES (Roles, Organization Design)

PEOPLE (Skills, Relationships, Values, Communications) **TECHNOLOGY** (Collaboration Tools, Media)

PROCESSES (Standards, Schedules, Plans)

Design Implications – Open Discussion

